Deploying AI Agents to the Cloud - Part 3: Deploying to AWS

π Deploying AI Agents to the Cloud
View All Parts in This Series
Ad Space
Deploying AI Agents to the Cloud - Part 3: Deploying to AWS
AWS provides the most comprehensive cloud platform for AI agent deployment, offering everything from simple serverless functions to complex multi-region architectures. While Vercel excels at simplicity, AWS gives you complete control over your infrastructure, security, and scaling strategies.
For AI agents, AWS offers unique advantages: longer execution times, more memory options, extensive database services, and enterprise-grade security features that make it ideal for production AI applications.
Why Choose AWS for AI Agent Deployment
Comprehensive Service Ecosystem AWS offers over 200 services that can enhance your AI agent:
- Lambda: Serverless functions with up to 15-minute execution time
- API Gateway: Managed API endpoints with throttling and caching
- RDS: Managed databases for conversation storage
- S3: Object storage for files, logs, and model artifacts
- CloudWatch: Comprehensive monitoring and alerting
Enterprise-Grade Security AWS provides security features that enterprise customers require:
- VPC: Private networks for your AI agent infrastructure
- IAM: Fine-grained access control for all resources
- KMS: Key management for encryption
- WAF: Web application firewall for API protection
Global Infrastructure AWS operates in 31 regions worldwide, allowing you to deploy your AI agent close to users for optimal performance.
Cost Optimization AWS's pay-as-you-go model with reserved instances and spot pricing can significantly reduce costs for predictable AI workloads.
What You'll Learn in This Tutorial
By the end of this tutorial, you'll have:
- β Complete AWS serverless deployment using Lambda and API Gateway
- β Production database setup with RDS and proper security
- β Comprehensive monitoring with CloudWatch and X-Ray
- β Auto-scaling configuration for variable AI workloads
- β Security best practices including VPC and IAM roles
- β Cost optimization strategies for AI agent workloads
Estimated Time: 45-50 minutes
Step 1: Understanding AWS Architecture for AI Agents
Before deploying, it's crucial to understand how AWS services work together to create a robust AI agent platform.
AWS Serverless Architecture for AI Agents
Core Components:
Internet β API Gateway β Lambda Function β RDS Database
β
CloudWatch (Monitoring)
β
S3 (Storage)
Why This Architecture Works for AI Agents:
API Gateway Acts as the front door for your AI agent, handling:
- Request routing to appropriate Lambda functions
- Rate limiting to prevent abuse
- Authentication integration with AWS Cognito
- Request/response transformation for different client types
Lambda Functions Perfect for AI agents because they:
- Scale automatically from zero to thousands of concurrent executions
- Support longer execution times (up to 15 minutes vs Vercel's 10 seconds)
- Offer more memory (up to 10GB vs Vercel's 3GB)
- Integrate seamlessly with other AWS services
RDS (Relational Database Service) Provides managed database hosting with:
- Automatic backups and point-in-time recovery
- Multi-AZ deployment for high availability
- Read replicas for improved performance
- Encryption at rest for data protection
AWS vs Other Platforms Comparison
Feature | AWS Lambda | Vercel | Traditional Server |
---|---|---|---|
Max Execution Time | 15 minutes | 10-60 seconds | Unlimited |
Max Memory | 10GB | 3GB | Server dependent |
Cold Start | ~100-500ms | ~100-300ms | None |
Scaling | Automatic | Automatic | Manual |
Database Integration | Native (RDS) | External only | Any |
Monitoring | CloudWatch | Basic | Custom |
Step 2: Setting Up AWS Infrastructure
Let's create the AWS infrastructure needed for your AI agent using Infrastructure as Code principles.
AWS Account Setup and Security
Initial AWS Setup Steps:
-
Create AWS Account
- Sign up at aws.amazon.com
- Complete identity verification
- Set up billing alerts
-
Secure Root Account
- Enable MFA (Multi-Factor Authentication)
- Create IAM user for daily operations
- Never use root account for development
-
Create Development IAM User
# Create IAM user with necessary permissions aws iam create-user --user-name ai-agent-developer # Attach policies for Lambda, API Gateway, RDS aws iam attach-user-policy --user-name ai-agent-developer --policy-arn arn:aws:iam::aws:policy/AWSLambdaFullAccess aws iam attach-user-policy --user-name ai-agent-developer --policy-arn arn:aws:iam::aws:policy/AmazonAPIGatewayAdministrator aws iam attach-user-policy --user-name ai-agent-developer --policy-arn arn:aws:iam::aws:policy/AmazonRDSFullAccess
Why This Security Setup Matters:
- Root Account Protection: Root account has unlimited access - compromising it could destroy your entire AWS infrastructure
- Principle of Least Privilege: Development user only has permissions needed for AI agent deployment
- MFA Protection: Even if passwords are compromised, MFA prevents unauthorized access
Installing AWS Tools
# Install AWS CLI
curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install
# Install Serverless Framework (alternative to SAM)
npm install -g serverless
# Install AWS SAM CLI (for local testing)
pip install aws-sam-cli
# Configure AWS credentials
aws configure
# Enter your Access Key ID, Secret Access Key, region, and output format
Tool Selection Explanation:
AWS CLI: Essential for managing AWS resources from command line.
Serverless Framework: Simplifies Lambda deployment with excellent Node.js support.
SAM CLI: AWS's official tool for serverless applications, great for local testing.
Step 3: Creating Your AI Agent Lambda Function
Let's create a Lambda function optimized for AI agent workloads.
Lambda Function Structure
AWS Lambda functions for AI agents need specific configuration to handle the unique requirements of AI processing:
// lambda/ai-agent-handler.js
const { OpenAI } = require('openai');
// Initialize OpenAI client outside handler for connection reuse
let openaiClient;
function getOpenAIClient() {
if (!openaiClient) {
openaiClient = new OpenAI({
apiKey: process.env.OPENAI_API_KEY
});
}
return openaiClient;
}
exports.handler = async (event, context) => {
// Configure Lambda context for AI workloads
context.callbackWaitsForEmptyEventLoop = false; // Don't wait for event loop to be empty
const startTime = Date.now();
try {
// Parse incoming request
const requestBody = JSON.parse(event.body || '{}');
const { message, userId, conversationId } = requestBody;
// Validate required fields
if (!message) {
return {
statusCode: 400,
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*'
},
body: JSON.stringify({
error: 'Missing message field',
message: 'Please provide a message in the request body'
})
};
}
console.log(`π€ Processing AI request for user: ${userId}`);
// Get conversation context (if available)
const conversationContext = await getConversationContext(conversationId);
// Process with OpenAI
const client = getOpenAIClient();
const response = await client.chat.completions.create({
model: process.env.OPENAI_MODEL || 'gpt-3.5-turbo',
messages: [
{
role: 'system',
content: process.env.SYSTEM_PROMPT || 'You are a helpful AI assistant.'
},
...conversationContext,
{
role: 'user',
content: message
}
],
max_tokens: parseInt(process.env.MAX_TOKENS) || 500,
temperature: parseFloat(process.env.TEMPERATURE) || 0.7
});
const aiResponse = response.choices[0].message.content;
// Store conversation (if enabled)
if (conversationId) {
await storeConversationMessage(conversationId, 'user', message);
await storeConversationMessage(conversationId, 'assistant', aiResponse);
}
// Calculate processing time
const processingTime = Date.now() - startTime;
// Return successful response
return {
statusCode: 200,
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*'
},
body: JSON.stringify({
success: true,
response: aiResponse,
metadata: {
processingTime: processingTime,
model: response.model,
tokensUsed: response.usage.total_tokens,
conversationId: conversationId
}
})
};
} catch (error) {
console.error('β AI processing error:', error);
// Return error response
return {
statusCode: 500,
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*'
},
body: JSON.stringify({
error: 'AI processing failed',
message: 'Please try again or contact support',
requestId: context.awsRequestId
})
};
}
};
async function getConversationContext(conversationId) {
/**
* Get recent conversation history for context
*/
if (!conversationId) {
return [];
}
try {
// In production, fetch from RDS database
// For now, return empty context
return [];
} catch (error) {
console.warn('Failed to get conversation context:', error);
return [];
}
}
async function storeConversationMessage(conversationId, role, content) {
/**
* Store conversation message in database
*/
try {
// In production, store in RDS database
console.log(`πΎ Storing message: ${role} in conversation ${conversationId}`);
} catch (error) {
console.warn('Failed to store conversation message:', error);
}
}
Lambda Function Explanation:
Connection Reuse: We initialize the OpenAI client outside the handler function so it's reused across invocations, reducing cold start time.
Context Configuration: callbackWaitsForEmptyEventLoop = false
prevents Lambda from waiting for background processes, improving response time.
Error Handling: Comprehensive error handling ensures users get helpful error messages while protecting internal details.
CORS Headers: Proper CORS configuration allows web clients to call your AI agent API.
Serverless Framework Configuration
Create a serverless.yml
file to define your AWS infrastructure:
# serverless.yml - Infrastructure as Code for AI Agent
service: ai-agent-aws
provider:
name: aws
runtime: nodejs18.x
region: us-east-1
stage: ${opt:stage, 'dev'}
# Memory and timeout configuration for AI workloads
memorySize: 1024 # 1GB memory for AI processing
timeout: 300 # 5 minutes timeout (adjust based on needs)
# Environment variables
environment:
STAGE: ${self:provider.stage}
OPENAI_API_KEY: ${env:OPENAI_API_KEY}
OPENAI_MODEL: ${env:OPENAI_MODEL, 'gpt-3.5-turbo'}
SYSTEM_PROMPT: ${env:SYSTEM_PROMPT, 'You are a helpful AI assistant.'}
MAX_TOKENS: ${env:MAX_TOKENS, '500'}
TEMPERATURE: ${env:TEMPERATURE, '0.7'}
# Database configuration
DB_HOST: ${env:DB_HOST}
DB_NAME: ${env:DB_NAME}
DB_USER: ${env:DB_USER}
DB_PASSWORD: ${env:DB_PASSWORD}
# IAM permissions
iamRoleStatements:
- Effect: Allow
Action:
- rds:DescribeDBInstances
- rds:Connect
Resource: "*"
- Effect: Allow
Action:
- logs:CreateLogGroup
- logs:CreateLogStream
- logs:PutLogEvents
Resource: "*"
- Effect: Allow
Action:
- xray:PutTraceSegments
- xray:PutTelemetryRecords
Resource: "*"
functions:
# Main AI chat function
aiChat:
handler: lambda/ai-agent-handler.handler
events:
- http:
path: /chat
method: post
cors: true
# Function-specific configuration
memorySize: 1024
timeout: 300
# Environment-specific settings
environment:
FUNCTION_NAME: ai-chat
# Health check function
healthCheck:
handler: lambda/health-check.handler
events:
- http:
path: /health
method: get
cors: true
# Lighter configuration for health checks
memorySize: 128
timeout: 30
# CloudFormation resources
resources:
Resources:
# API Gateway configuration
ApiGatewayRestApi:
Type: AWS::ApiGateway::RestApi
Properties:
Name: ${self:service}-${self:provider.stage}
Description: AI Agent API
# CloudWatch Log Groups
AiChatLogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName: /aws/lambda/${self:service}-${self:provider.stage}-aiChat
RetentionInDays: 14
plugins:
- serverless-offline # For local development
- serverless-plugin-tracing # For X-Ray tracing
custom:
# Local development configuration
serverless-offline:
httpPort: 3000
host: 0.0.0.0
Serverless Configuration Explanation:
Memory and Timeout: AI processing requires more resources than typical web APIs. 1GB memory and 5-minute timeout accommodate most AI operations.
IAM Permissions: Specific permissions for database access, logging, and tracing. Following least-privilege principle.
Environment Variables: Centralized configuration that can be different per deployment stage (dev, staging, production).
CloudWatch Integration: Automatic log collection and retention management.
Step 4: Database Integration with RDS
AI agents need persistent storage for conversations, user preferences, and learning data. AWS RDS provides managed database hosting.
RDS Setup for AI Agents
Why RDS Over Simple Storage:
- ACID Compliance: Ensures data consistency for conversation storage
- Backup and Recovery: Automatic backups with point-in-time recovery
- Performance: Optimized for read/write operations typical in AI agents
- Security: Encryption at rest and in transit, VPC isolation
RDS Configuration for AI Agents:
# Add to serverless.yml resources section
# RDS Subnet Group (for VPC deployment)
DBSubnetGroup:
Type: AWS::RDS::DBSubnetGroup
Properties:
DBSubnetGroupDescription: Subnet group for AI Agent database
SubnetIds:
- ${env:SUBNET_ID_1}
- ${env:SUBNET_ID_2}
Tags:
- Key: Name
Value: ai-agent-db-subnet-group
# RDS Instance
AIAgentDatabase:
Type: AWS::RDS::DBInstance
Properties:
DBInstanceIdentifier: ai-agent-${self:provider.stage}
DBInstanceClass: db.t3.micro # Start small, can scale up
Engine: postgres
EngineVersion: '14.9'
# Database configuration
DBName: aiagent
MasterUsername: ${env:DB_MASTER_USER}
MasterUserPassword: ${env:DB_MASTER_PASSWORD}
# Storage configuration
AllocatedStorage: 20 # 20GB initial storage
StorageType: gp2
StorageEncrypted: true
# Network and security
VPCSecurityGroups:
- Ref: DatabaseSecurityGroup
DBSubnetGroupName:
Ref: DBSubnetGroup
# Backup configuration
BackupRetentionPeriod: 7
DeleteAutomatedBackups: false
DeletionProtection: true # Prevent accidental deletion
# Monitoring
MonitoringInterval: 60
EnablePerformanceInsights: true
# Security Group for Database
DatabaseSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Security group for AI Agent database
VpcId: ${env:VPC_ID}
SecurityGroupIngress:
- IpProtocol: tcp
FromPort: 5432
ToPort: 5432
SourceSecurityGroupId:
Ref: LambdaSecurityGroup
Tags:
- Key: Name
Value: ai-agent-db-security-group
Database Connection in Lambda
// lambda/database/connection.js
const { Pool } = require('pg');
// Create connection pool outside handler for reuse
let dbPool;
function getDBPool() {
if (!dbPool) {
dbPool = new Pool({
host: process.env.DB_HOST,
port: process.env.DB_PORT || 5432,
database: process.env.DB_NAME,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
// SSL configuration for security
ssl: {
require: true,
rejectUnauthorized: false
},
// Connection pool settings optimized for Lambda
max: 1, // Lambda functions are single-threaded
min: 0, # Allow connections to close when not needed
idle: 1000,
acquire: 3000,
dispose: 5000
});
console.log('β
Database connection pool initialized');
}
return dbPool;
}
async function executeQuery(query, params = []) {
/**
* Execute database query with proper error handling
*/
const pool = getDBPool();
const client = await pool.connect();
try {
const result = await client.query(query, params);
return result;
} catch (error) {
console.error('β Database query failed:', error);
throw error;
} finally {
client.release();
}
}
// Conversation storage functions
async function storeConversationMessage(conversationId, role, content, metadata = {}) {
const query = `
INSERT INTO messages (conversation_id, role, content, metadata, created_at)
VALUES ($1, $2, $3, $4, NOW())
RETURNING id, created_at
`;
const result = await executeQuery(query, [
conversationId,
role,
content,
JSON.stringify(metadata)
]);
return result.rows[0];
}
async function getConversationHistory(conversationId, limit = 10) {
const query = `
SELECT role, content, created_at, metadata
FROM messages
WHERE conversation_id = $1
ORDER BY created_at DESC
LIMIT $2
`;
const result = await executeQuery(query, [conversationId, limit]);
// Return in chronological order (oldest first)
return result.rows.reverse();
}
module.exports = {
executeQuery,
storeConversationMessage,
getConversationHistory
};
Database Integration Explanation:
Connection Pooling: Lambda functions can reuse connections across invocations, reducing connection overhead.
SSL Security: All database connections use SSL encryption to protect data in transit.
Error Handling: Proper error handling ensures database issues don't crash your AI agent.
Optimized Queries: Queries are designed for the access patterns typical in AI agent applications.
Step 5: API Gateway Configuration
API Gateway acts as the front door for your AI agent, handling authentication, rate limiting, and request routing.
API Gateway Setup
Why API Gateway is Essential for AI Agents:
- Rate Limiting: Prevents abuse and controls costs
- Authentication: Integrates with AWS Cognito for user management
- Request Transformation: Handles different client formats (web, mobile, etc.)
- Caching: Reduces Lambda invocations for repeated requests
- Monitoring: Detailed metrics and logging
# API Gateway configuration in serverless.yml
custom:
# API Gateway settings
apiGateway:
# Request validation
request:
schemas:
chat-request:
name: ChatRequest
description: Schema for AI chat requests
schema:
type: object
properties:
message:
type: string
minLength: 1
maxLength: 4000
userId:
type: string
pattern: '^[a-zA-Z0-9-_]+$'
conversationId:
type: string
pattern: '^[a-zA-Z0-9-_]+$'
required:
- message
# Response templates
response:
headers:
Access-Control-Allow-Origin: "'*'"
Access-Control-Allow-Headers: "'Content-Type,Authorization'"
Access-Control-Allow-Methods: "'GET,POST,OPTIONS'"
# Throttling configuration
throttle:
burstLimit: 100 # Allow bursts up to 100 requests
rateLimit: 50 # 50 requests per second sustained
functions:
aiChat:
handler: lambda/ai-agent-handler.handler
events:
- http:
path: /chat
method: post
cors: true
# Request validation
request:
schemas:
application/json: ${self:custom.apiGateway.request.schemas.chat-request}
# Rate limiting
throttling:
burstLimit: 20
rateLimit: 10
API Gateway Configuration Explanation:
Request Validation: API Gateway validates requests before they reach Lambda, reducing invalid invocations and costs.
Rate Limiting: Protects your AI agent from abuse and helps control OpenAI API costs.
CORS Configuration: Allows web applications to call your AI agent API from browsers.
Schema Validation: Ensures requests have the correct format, preventing errors in your Lambda function.
Step 6: Monitoring and Observability
AWS provides comprehensive monitoring tools that give you deep insights into your AI agent's performance.
CloudWatch Monitoring Setup
Essential Metrics for AI Agents:
- Response Time: How long AI processing takes
- Error Rate: Percentage of failed requests
- Token Usage: OpenAI API token consumption
- Memory Usage: Lambda memory utilization
- Database Performance: Query response times
// lambda/monitoring/cloudwatch-metrics.js
const AWS = require('aws-sdk');
const cloudwatch = new AWS.CloudWatch();
class CloudWatchMetrics {
constructor() {
this.namespace = 'AIAgent';
this.defaultDimensions = [
{
Name: 'Environment',
Value: process.env.STAGE || 'dev'
}
];
}
async recordMetric(metricName, value, unit = 'Count', dimensions = []) {
/**
* Record custom metric to CloudWatch
*/
const params = {
Namespace: this.namespace,
MetricData: [
{
MetricName: metricName,
Value: value,
Unit: unit,
Timestamp: new Date(),
Dimensions: [...this.defaultDimensions, ...dimensions]
}
]
};
try {
await cloudwatch.putMetricData(params).promise();
console.log(`π Metric recorded: ${metricName} = ${value}`);
} catch (error) {
console.error('β Failed to record metric:', error);
}
}
async recordAIProcessingMetrics(processingTime, tokensUsed, success = true) {
/**
* Record AI-specific metrics
*/
// Record processing time
await this.recordMetric('ProcessingTime', processingTime, 'Milliseconds');
// Record token usage
await this.recordMetric('TokensUsed', tokensUsed, 'Count');
// Record success/failure
await this.recordMetric('RequestSuccess', success ? 1 : 0, 'Count');
// Record error if failed
if (!success) {
await this.recordMetric('RequestError', 1, 'Count');
}
}
async recordDatabaseMetrics(queryTime, queryType) {
/**
* Record database performance metrics
*/
await this.recordMetric('DatabaseQueryTime', queryTime, 'Milliseconds', [
{
Name: 'QueryType',
Value: queryType
}
]);
}
}
module.exports = CloudWatchMetrics;
Setting Up CloudWatch Alarms
# Add to serverless.yml resources
# High error rate alarm
HighErrorRateAlarm:
Type: AWS::CloudWatch::Alarm
Properties:
AlarmName: ${self:service}-${self:provider.stage}-high-error-rate
AlarmDescription: Alert when AI agent error rate is high
MetricName: Errors
Namespace: AWS/Lambda
Statistic: Sum
Period: 300 # 5 minutes
EvaluationPeriods: 2
Threshold: 10
ComparisonOperator: GreaterThanThreshold
Dimensions:
- Name: FunctionName
Value: ${self:service}-${self:provider.stage}-aiChat
# SNS notification (configure SNS topic separately)
AlarmActions:
- ${env:SNS_ALERT_TOPIC_ARN}
# High response time alarm
HighLatencyAlarm:
Type: AWS::CloudWatch::Alarm
Properties:
AlarmName: ${self:service}-${self:provider.stage}-high-latency
AlarmDescription: Alert when AI agent response time is high
MetricName: Duration
Namespace: AWS/Lambda
Statistic: Average
Period: 300
EvaluationPeriods: 2
Threshold: 30000 # 30 seconds
ComparisonOperator: GreaterThanThreshold
Dimensions:
- Name: FunctionName
Value: ${self:service}-${self:provider.stage}-aiChat
Monitoring Explanation:
Custom Metrics: We track AI-specific metrics like token usage and processing time, which aren't available in standard AWS metrics.
Alarms: Automated alerts notify you when your AI agent isn't performing well, allowing quick response to issues.
Retention Policies: Log retention is configured to balance cost and debugging needs.
Step 7: Deployment and Testing
Now let's deploy your AI agent to AWS and test it thoroughly.
Deployment Process
1. Configure AWS Credentials:
# Set up AWS credentials
aws configure
# Enter your Access Key ID, Secret Access Key, region (us-east-1), and output format (json)
2. Install Dependencies:
# Install Serverless Framework
npm install -g serverless
# Install project dependencies
npm install
3. Deploy to Development:
# Deploy to development environment
serverless deploy --stage dev
# The output will show your API endpoints:
# endpoints:
# POST - https://abc123.execute-api.us-east-1.amazonaws.com/dev/chat
# GET - https://abc123.execute-api.us-east-1.amazonaws.com/dev/health
4. Test Your Deployment:
# Test the health endpoint
curl https://your-api-id.execute-api.us-east-1.amazonaws.com/dev/health
# Test the AI chat endpoint
curl -X POST https://your-api-id.execute-api.us-east-1.amazonaws.com/dev/chat \
-H "Content-Type: application/json" \
-d '{"message": "Hello, AI agent!", "userId": "test-user"}'
Production Deployment Best Practices
Environment Separation:
# Deploy to different stages
serverless deploy --stage dev # Development
serverless deploy --stage staging # Staging/Testing
serverless deploy --stage prod # Production
Environment-Specific Configuration:
# .env.dev
OPENAI_MODEL=gpt-3.5-turbo
MAX_TOKENS=500
DB_INSTANCE_CLASS=db.t3.micro
# .env.prod
OPENAI_MODEL=gpt-4
MAX_TOKENS=1000
DB_INSTANCE_CLASS=db.t3.small
Step 8: Cost Optimization Strategies
AWS costs can add up quickly if not managed properly. Here are strategies to optimize costs for AI agent workloads.
Lambda Cost Optimization
Memory vs Duration Trade-off: Higher memory allocation often reduces execution time, potentially lowering overall costs.
// Example: Cost optimization analysis
const costAnalysis = {
// Scenario 1: Low memory, longer execution
lowMemory: {
memoryMB: 512,
avgExecutionMs: 5000,
costPer1MInvocations: 8.33 // USD
},
// Scenario 2: High memory, shorter execution
highMemory: {
memoryMB: 1024,
avgExecutionMs: 2500,
costPer1MInvocations: 8.33 // Often the same or lower
}
};
// Monitor your actual metrics to find the optimal configuration
Reserved Capacity: For predictable workloads, Lambda reserved capacity can reduce costs by up to 17%.
Database Cost Optimization
Right-Sizing Strategy:
# Development environment
DBInstanceClass: db.t3.micro # $0.017/hour
# Production environment (scale based on usage)
DBInstanceClass: db.t3.small # $0.034/hour
# or
DBInstanceClass: db.r5.large # $0.24/hour for high-performance needs
Storage Optimization:
- gp2: General purpose, cost-effective
- gp3: Better performance per dollar for high-throughput applications
- io1: High IOPS for demanding applications
What You've Accomplished
Your AI agent is now deployed on AWS with enterprise-grade infrastructure:
- β Serverless Architecture: Lambda functions with optimal memory and timeout configuration
Ad Space
Recommended Tools & Resources
* This section contains affiliate links. We may earn a commission when you purchase through these links at no additional cost to you.
π Featured AI Books
OpenAI API
AI PlatformAccess GPT-4 and other powerful AI models for your agent development.
LangChain Plus
FrameworkAdvanced framework for building applications with large language models.
Pinecone Vector Database
DatabaseHigh-performance vector database for AI applications and semantic search.
AI Agent Development Course
EducationComplete course on building production-ready AI agents from scratch.
π‘ Pro Tip
Start with the free tiers of these tools to experiment, then upgrade as your AI agent projects grow. Most successful developers use a combination of 2-3 core tools rather than trying everything at once.
π Deploying AI Agents to the Cloud
View All Parts in This Series
π Join the AgentForge Community
Get weekly insights, tutorials, and the latest AI agent developments delivered to your inbox.
No spam, ever. Unsubscribe at any time.